Modeling laser-induced incandescence of Diesel soot—Implementation of an advanced parameterization procedure applied to a refined LII model accounting for shielding effect and multiple scattering within aggregates for $${\varvec{\alpha}}_{{\varvec{T}}}$$ and $${\varvec{E}}\left( {\varvec{m}} \right)$$ assessment

Author:

Lemaire Romain,Menanteau S.

Abstract

AbstractAn extensive set of LII signals measured in a Diesel spray flame has been simulated using a refined LII model built upon a comprehensive version of soot heat- and mass-balance equations. This latter includes terms standing for saturation of linear, single- and multi-photon absorption processes, cooling by sublimation, conduction, radiation and thermionic emission in addition to mechanisms depicting soot oxidation and annealing, non-thermal photodesorption of carbon clusters as well as corrective factors allowing considering shielding effect and multiple scattering (MS) within aggregates. A complete parameterization of the so-proposed model has been achieved by means of an advanced optimization procedure coupling design of experiments with a genetic algorithm-based solver. Doing so, the values of different factors involved in absorption and sublimation terms have been assessed for a 1064-nm laser excitation wavelength including the multi-photon absorption cross section for C2 photodesorption and the saturation coefficients for linear- and multi-photon absorption, among others. This parameterized model has then been demonstrated to effectively reproduce signals measured in different combustion media including a CH4/O2/N2 premixed flat flame and a diffusion ethylene flame. As a result of the data derived from the analysis of the Diesel flame, a thermal accommodation coefficient value of 0.49 has been assessed against 0.34 when neglecting the shielding effect. In addition, values of the soot absorption function ($$E\left( m \right)$$ E m ) comprised between 0.18 and 0.31 have been inferred depending on the particle maturation stage. On the other hand, $$E\left( m \right)$$ E m 24% higher on average have been estimated when neglecting MS thus illustrating the importance of aggregate characteristics on soot properties derived through LII modeling. Eventually, the $$E\left( m \right)$$ E m evolution observed herein has been compared with results issued from studies conducted with varied hydrocarbons which led to highlight the crucial role played by the soot maturity level over the nature of the burnt fuel as far as optical properties are concerned.

Funder

Canada Foundation for Innovation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3