Sparse reconstruction for integral Fourier holography using dictionary learning method

Author:

Kuruguntla Lakshmi,Dodda Vineela Chandra,Wan Min,Elumalai Karthikeyan,Chinnadurai Sunil,Muniraj Inbarasan,Sheridan John T.

Abstract

AbstractA simplified (i.e., single shot) method is demonstrated to generate a Fourier hologram from multiple two-dimensional (2D) perspective images (PIs) under low light level imaging conditions. It was shown that the orthographic projection images (OPIs) can be synthesized using PIs and then, following incorporation of corresponding phase values, a digital hologram can be generated. In this work, a fast dictionary learning (DL) technique, known as Sequential Generalised K-means (SGK) algorithm, is used to perform Integral Fourier hologram reconstruction from fewer samples. The SGK method transforms the generated Fourier hologram into its sparse form, which represented it with a linear combination of some basis functions, also known as atoms. These atoms are arranged in the form of a matrix called a dictionary. In this work, the dictionary is updated using an arithmetic average method while the Orthogonal Matching Pursuit algorithm is opted to update the sparse coefficients. It is shown that the proposed DL method provides good hologram quality, (in terms of peak signal-to-noise ratio) even for cases of ~ 90% sparsity.

Funder

Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications

Department of Science and Technology, Government of Rajasthan

University College Dublin

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundus-based photoacoustic vascular image denoising and enhancement;Tissue Optics and Photonics III;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3