Skip to main content
Log in

A broad-angle spectrum reflection pump–probe technique based on the Brewster angle

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Here, a sensitive reflection pump–probe technique is demonstrated for studying the optical nonlinear (NLO) properties of samples with a high linear absorptive coefficient at a certain wavelength. Light with a broad-angle spectrum around the Brewster angle is applied as the incident beam. An adjustable slit is utilized to select a part of the reflection angle, replacing the traditional rotation method in the reflection pump probe. The sensitivity of this technique is affected by the position and width of the slit. The closer to the Brewster angle, the more sensitivity the technique achieves. This technique can precisely control the angle of reflection, resulting in a significant enhancement with easier system operation. In addition, the simple optical path used here can be applied to other techniques for studying the properties of NLO samples. Experimentally, a normalized reflectivity enhancement is observed at 532 nm, and the impact of the incident angle on the pump-probe signal of the silicon crystal is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. C.B. Yao, Y.D. Zhang, W.J. Sun, C.Q. Yu, J. Li, P. Yuan, Opt. Express 21(2), 2212–2219 (2013)

    Article  ADS  Google Scholar 

  2. K.B. Manjunatha, R. Rajarao, G. Umesh, B.R. Bhat, P. Poornesh, Opt. Mater. 72, 513–517 (2017)

    Article  ADS  Google Scholar 

  3. S. Anandan, S. Manoharan, N.K.S. Narendran, T.C.S. Girisun, A.M. Asiri, Opt. Mater. 85, 18–25 (2018)

    Article  ADS  Google Scholar 

  4. J. Touch, A.-H. Badawy, V.J. Sorger, Nanophotonics 6(3), 503–505 (2017)

    Article  Google Scholar 

  5. A. Yariv, D.M. Pepper, Opt. Lett. 1(1), 16–18 (1977)

    Article  ADS  Google Scholar 

  6. M. Sheikbahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Vanstryland, IEEE J. Quantum Electron. 26(4), 760–769 (1990)

    Article  ADS  Google Scholar 

  7. G. Boudebs, S. Cherukulappurath, Phys. Rev. A 69, 5 (2004)

    Article  Google Scholar 

  8. D.V. Petrov, A.S.L. Gomes, C.B. Dearaujo, Appl. Phys. Lett. 65(9), 1067–1069 (1994)

    Article  ADS  Google Scholar 

  9. J.Y. Yang, Y.X. Wang, X.R. Zhang, C.W. Li, X. Jin, M. Shui, Y.L. Song, J. Phys. B-At. Mol. Opt. Phys. 42, 22 (2009)

    Google Scholar 

  10. M. Martinelli, S. Bian, J.R. Leite, R.J. Horowicz, Appl. Phys. Lett. 72(12), 1427–1429 (1998)

    Article  ADS  Google Scholar 

  11. J. Nishida, C. Yan, M.D. Fayer, J. Chem. Phys. 146, 9 (2017)

    Article  Google Scholar 

  12. T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda, Opt. Commun.Commun. 160(1–3), 125–129 (1999)

    Article  ADS  Google Scholar 

  13. O. Golonzka, M. Khalil, N. Demirdöven, A. Tokmakoff, Phys. Rev. Lett. 86(10), 2154–2157 (2001)

    Article  ADS  Google Scholar 

  14. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  ADS  Google Scholar 

  15. Y. Fang, Z.G. Xiao, X.Z. Wu, F. Zhou, J.Y. Yang, Y. Yang, Y.L. Song, Appl. Phys. Lett. 106, 25 (2015)

    Google Scholar 

  16. P.M. Fauchet, W.L. Nighan Jr., Appl. Phys. Lett. 48(11), 721–723 (1986)

    Article  ADS  Google Scholar 

  17. M. Shui, X. Luo, X. Zhang, X. Jin, C. Li, J. Yang, Z. Li, G. Shi, K. Yang, Y. Wang, Y. Song, J. Opt. Soc. Am. A 27(11), 2514–2523 (2010)

    Article  ADS  Google Scholar 

  18. X.H. Chen, K. Wang, M.C. Beard, Phys. Chem. Chem. Phys. 21(30), 16399–16407 (2019)

    Article  Google Scholar 

  19. D. Yan, D. Xu, J. Li, Y. Wang, F. Liang, J. Wang, C. Yan, H. Liu, J. Shi, L. Tang, Y. He, K. Zhong, Z. Lin, Y. Zhang, H. Cheng, W. Shi, J. Yao, Y. Wu, Opt. Mater. 78, 484–489 (2018)

    Article  ADS  Google Scholar 

  20. T.R. Tsai, T.H. Wu, J.C. Liao, T.H. Wei, H.P. Chiang, J.S. Hwang, D.P. Tsai, Y.F. Chen, J. Appl. Phys. 105, 6 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (11704273, 51607119), the National Safety Academic Fund (U1630103), and the Science and Technology Innovation Team of Guizhou Education Department (Grant No. [2023]094).

Funding

This work was funded by Science and Technology Innovation Team of Guizhou Education Department, under Grant No. [2023]094.

Author information

Authors and Affiliations

Authors

Contributions

JY and YY contributed to the conception of the study; MD and JY performed the experiment and prepared Figs. 1, 2, 3, 4; ZL and YF contributed significantly to analysis and manuscript preparation; MD and WZ performed the data analyses and wrote the main manuscript text; XW and YS helped to perform the analysis with constructive discussions; all authors reviewed the manuscript.

Corresponding authors

Correspondence to Junyi Yang, Yong Yang or Yinglin Song.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Yang, J., Zhou, W. et al. A broad-angle spectrum reflection pump–probe technique based on the Brewster angle. Appl. Phys. B 130, 35 (2024). https://doi.org/10.1007/s00340-023-08170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08170-0

Navigation