Author:
Pfeifer Max,Huynh Dan-Nha,Wegner Gino,Intravaia Francesco,Peschel Ulf,Busch Kurt
Abstract
AbstractEfficient modeling of dispersive materials via time-domain simulations of the Maxwell equations relies on the technique of auxiliary differential equations. In this approach, a material’s frequency-dependent permittivity is represented via a sum of rational functions, e.g., Lorentz poles, and the associated free parameters are determined by fitting to experimental data. In the present work, we present a modified approach for plasmonic materials that requires considerably fewer fit parameters than traditional approaches. Specifically, we consider the underlying microscopic theory and, in the frequency domain, separate the hydrodynamic contributions of the quasi-free electrons in partially filled bands from the interband transitions. As an illustration, we apply our approach to gold and demonstrate how to treat the interband transitions within the effective model via connecting to the underlying electronic band structure, thereby assigning physical meaning to the remaining fit parameters. Finally, we show how to utilize this approach within the technique of auxiliary differential equations. Our approach can be extended to other plasmonic materials and leads to efficient time-domain simulations of plasmonic structures for frequency ranges where interband transitions have to be considered.
Funder
Deutsche Forschungsgemeinschaft
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献