Abstract
AbstractIt has recently been shown that $$\hbox {CO}_2$$
CO
2
hydrogenation to methanol over PdIn and $$\hbox {In}_2\hbox {O}_3$$
In
2
O
3
depends critically on the adsorption energy of hydrogen. Here we use density functional theory calculations to investigate hydrogen adsorption over Pd–In intermetallic compound surfaces with different Pd:In ratios. The electronic structure and properties of hydrogen adsorption are investigated for a range of surface facets and compared to the corresponding results for the pure parent metals and Cu. Increased In content is found to shift the Pd(d) density of states away from the Fermi level, making the intermetallic Pd–In compounds to appear “Cu-like”. We find a linear correlation between the hydrogen binding energy and the d-band center of surface Pd atoms. Understanding of how the hydrogen adsorption energy depends on composition and structure provides a possibility to enhance the performance of $$\hbox {CO}_2$$
CO
2
hydrogenation catalysts to methanol.
Funder
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet
Chalmers University of Technology
Publisher
Springer Science and Business Media LLC
Subject
General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献