Selective Catalytic Reduction with Hydrogen for Exhaust gas after-treatment of Hydrogen Combustion Engines

Author:

Borchers MichaelORCID,Lott PatrickORCID,Deutschmann OlafORCID

Abstract

AbstractIn this work, two palladium-based catalysts with either ZSM-5 or Zeolite Y as support material are tested for their performance in selective catalytic reduction of NOx with hydrogen (H2-SCR). The ligh-toff measurements in synthetic exhaust gas mixtures typical for hydrogen combustion engines are supplemented by detailed catalyst characterization comprising N2 physisorption, X-ray powder diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR) and ammonia temperature programmed desorption (NH3-TPD). Introducing 10% or 20% TiO2 into the catalyst formulations reduced the surface area and the number of acidic sites for both catalysts, however, more severely for the Zeolite Y-supported catalysts. The higher reducibility of the Pd particles that was uncovered by H2-TPR resulted in an improved catalytic performance during the light-off measurements and substantially boosted NO conversion. Upon exposition to humid exhaust gas, the ZSM-5-supported catalysts showed a significant drop in performance, whereas the Zeolite Y-supported catalyst kept the high levels of conversion while shifting the selectivity from N2O more toward NH3 and N2. The 1%Pd/20%TiO2/HY catalyst subject to this work outperforms one of the most active and selective benchmark catalyst formulations, 1%Pd/5%V2O5/20%TiO2-Al2O3, making Zeolite Y a promising support material for H2-SCR catalyst formulations that allow efficient and selective NOx-removal from exhaust gases originating from hydrogen-fueled engines.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3