Abstract
AbstractThe growth of ultrathin layers of VOx (< 12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron diffraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium diffuses into the Pt subsurface region. Exposure to O2 causes part of the V to diffuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar.
Publisher
Springer Science and Business Media LLC
Subject
General Chemistry,Catalysis