Pd-Doped SSZ-13 for Low-T NOx Adsorption: an Operando FT-IR Spectroscopy Study

Author:

Hamid Y.,Matarrese R.,Morandi S.,Castoldi L.,Lietti L.ORCID

Abstract

AbstractIn this study, mechanistic aspects of NO adsorption/desorption over a home-made Pd/SSZ-13 passive NOx adsorber (PNA) catalyst are investigated. Operando FT-IR spectroscopy and microreactor experiments are performed to envisage the performance of the catalyst and the pathway involved in NO adsorption, with particular emphasis to the impact of species such as C3H6 and CO. In the absence of C3H6 and CO, NO is observed to adsorb as nitrosyls (anhydrous and hydrated) over both Pd2+ and Pd+ species, and as nitrates. 80 μmolNOx/gcat (NO/Pd molar ratio of 0.8) are adsorbed. The stability of nitrosyls is higher in comparison to the nitrates in that the former initially dehydrate and further decompose at elevated temperatures (> 300 °C) leading to the evolution of NO. The presence of CO and C3H6 negatively affects the amounts of NO adsorbed (53 and 45 μmolNOx/gcat, respectively) due to the reduction of Pd sites. CO admission to the catalyst forms a variety of carbonyl species over Pd2+, Pd+ and Pd0 sites which upon NO admission are readily displaced and NO is adsorbed as hydrated/anhydrous nitrosyls of Pdn+. The nitrosyls so formed exhibit lower thermal stability in comparison to nitrosyls observed in the absence of CO and decompose below 300 °C. The addition of C3H6 leads to the apparent formation of oxidized species like acetone, acrolein and acetates, besides propylene adsorption. The NO adsorption in the presence of C3H6 leads to the formation of Pdn+(NO)(X) complexes; upon heating the decomposition of this complexes is observed at low temperatures along with propylene and water desorption. Formation of organic nitro-compounds is also observed that decompose at higher temperatures.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3