Abstract
AbstractMixed oxides with perovskite-type structure (ABO3) present interesting physico-chemical properties to be used as catalyst for atmospheric pollution control. In this work, a series of CuX/Ba0.7MnO3 catalysts (being x: 0, 4, 8 and 12 wt%) has been synthesized, characterized and tested for CO oxidation reaction. All the catalysts were active for CO oxidation in the two reactant mixtures tested: low CO mixture (0.1% CO and 1% O2 in He) and near stoichiometric mixture (1% CO and 1% O2 in He). Copper-free perovskite is the most active catalyst in the less demanding conditions (0.1% CO and 1% O2), as it presents the highest amount of oxygen vacancies working as active sites. However, at higher CO concentrations (1% CO in near stoichiometric mixture), copper-containing catalysts were more active than the perovskite support because, due to the saturation of the oxygen vacancies of perovskites, CuO seems to participate as active site for CO and O2 activation. Cu4/Ba0.7MnO3 and Cu12/Ba0.7MnO3 are more active than Cu8/Ba0.7MnO3 catalyst, since they present a larger amount of active sites on surface. These two copper-containing catalysts present a high stability and recyclability during the reaction at 300 °C in an ideal near stoichiometric mixture (1% CO and 1% O2).
Funder
Ministerio de Ciencia, Innovación y Universidades
European Regional Development Fund
Generalitat Valenciana
Universidad de Alicante
Publisher
Springer Science and Business Media LLC
Subject
General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献