Abstract
AbstractThe hydrogenation of benzaldehyde in cyclohexane over a 5 wt% Pd/Al2O3 catalyst at 313 K is firstly investigated at ambient pressure in a stirred batch reactor. The formation of benzyl alcohol is a facile process and a small mass imbalance is indirectly attributed to the formation of benzene as a by-product. No hydrogenolysis reaction to form toluene is observed. Secondly, examination of this reaction system by attenuated total reflection infrared (ATR-IR) spectroscopy enables the chemistry at the liquid/solid interface to be probed. Specifically, the ν(C=O) modes of solvated and adsorbed benzaldehyde are evident at 1712 and 1691 cm−1 respectively, providing information on how the reagent is partitioning within the reaction medium. Spectral acquisition on initiation of hydrogenation then enables the benzaldehyde → benzyl alcohol transition to be tracked. The additional presence of a broad CO stretching band of chemisorbed carbon monoxide (1852–1929 cm−1) is attributed to the hydrogen-assisted decarbonylation pathway that forms the benzene by-product.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献