Disk-Shaped Cobalt Nanocrystals as Fischer–Tropsch Synthesis Catalysts Under Industrially Relevant Conditions

Author:

van Deelen T. W.,Harmel J. M.,Nijhuis J. J.,Su H.,Yoshida H.,Oord R.,Zečević J.,Weckhuysen B. M.,de Jong K. P.

Abstract

AbstractColloidal synthesis of metal nanocrystals (NC) offers control over size, crystal structure and shape of nanoparticles, making it a promising method to synthesize model catalysts to investigate structure-performance relationships. Here, we investigated the synthesis of disk-shaped Co-NC, their deposition on a support and performance in the Fischer–Tropsch (FT) synthesis under industrially relevant conditions. From the NC synthesis, either spheres only or a mixture of disk-shaped and spherical Co-NC was obtained. The disks had an average diameter of 15 nm, a thickness of 4 nm and consisted of hcp Co exposing (0001) on the base planes. The spheres were 11 nm on average and consisted of ε-Co. After mild oxidation, the CoO-NC were deposited on SiO2 with numerically 66% of the NC being disk-shaped. After reduction, the catalyst with spherical plus disk-shaped Co-NC had 50% lower intrinsic activity for FT synthesis (20 bar, 220 °C, H2/CO = 2 v/v) than the catalyst with spherical NC only, while C5+-selectivity was similar. Surprisingly, the Co-NC morphology was unchanged after catalysis. Using XPS it was established that nitrogen-containing ligands were largely removed and in situ XRD revealed that both catalysts consisted of 65% hcp Co and 21 or 32% fcc Co during FT. Furthermore, 3–5 nm polycrystalline domains were observed. Through exclusion of several phenomena, we tentatively conclude that the high fraction of (0001) facets in disk-shaped Co-NC decrease FT activity and, although very challenging to pursue, that metal nanoparticle shape effects can be studied at industrially relevant conditions.

Funder

Shell Global Solutions

Stichting voor de Technische Wetenschappen

FP7 Ideas: European Research Council

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3