Experimental Verification of Low-Pressure Kinetics Model for Direct Synthesis of Dimethyl Carbonate Over CeO2 Catalyst

Author:

Ibrahim G.,Abdelbar A.,Choudhury H. A.,Challiwala M. S.,Prakash A.,Mondal K.,Solim S.,Elbashir Nimir O.

Abstract

AbstractDimethyl carbonate (DMC) has emerged as a promising candidate for sustainable chemical processes due to its remarkable versatility and low toxicity. From a green chemistry perspective, the direct synthesis of DMC has been considered the most promising route, as water is the only byproduct generated in the reaction between CO2 and methanol. However, this synthetic route has faced significant thermodynamic limitations, even at elevated pressure conditions. Therefore, a two-part study explored low-pressure synthesis of DMC via the direct route, and a low-pressure kinetic model for the CeO2 catalyst was developed based on the results. Proposed Langmuir–Hinshelwood mechanisms were verified using experimental data generated in our labs. The investigation suggests that DMC formation in the direct synthetic route is a surface reaction of CO2 and methanol on the catalyst. The kinetic model predictions closely aligned with experimental data, demonstrating a 17% mean absolute percentage error and indicating a high level of predictability. Additionally, a rigorous assessment was conducted on CO2 fixations in DMC synthesis, quantifying CO2 capture and its conversion into stable or high-value products, formally designated as CO2 Fixation (CO2Fix). The CO2Fix analysis revealed that, at a conversion rate of 27%, the process can achieve a "net zero" state when operated at an approximate pressure of 30 bar, thereby supporting the viability of low-pressure synthesis. Increasing the conversion rate to levels exceeding 95% significantly enhances the CO2Fix metric, potentially surpassing 3.5 or higher.

Funder

Texas A&M University at Qatar

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3