The Catalyst Selectivity Index (CSI): A Framework and Metric to Assess the Impact of Catalyst Efficiency Enhancements upon Energy and CO2 Footprints

Author:

Xiao Tiancun,Shirvani Tara,Inderwildi Oliver,Gonzalez-Cortes Sergio,AlMegren Hamid,King David,Edwards Peter P.

Abstract

AbstractHeterogeneous catalysts are not only a venerable part of our chemical and industrial heritage, but they also occupy a pivotal, central role in the advancement of modern chemistry, chemical processes and chemical technologies. The broad field of catalysis has also emerged as a critical, enabling science and technology in the modern development of “Green Chemistry”, with the avowed aim of achieving green and sustainable processes. Thus a widely utilized metric, the environmental E factor—characterizing the waste-to-product ratio for a chemical industrial process—permits one to assess the potential deleterious environmental impact of an entire chemical process in terms of excessive solvent usage. As the many (and entirely reasonable) societal pressures grow, requiring chemists and chemical engineers not only to develop manufacturing processes using new sources of energy, but also to decrease the energy/carbon footprint of existing chemical processes, these issues become ever more pressing. On that road to a green and more sustainable future for chemistry and energy, we note that, as far as we are aware, little effort has been directed towards a direct evaluation of the quantitative impacts that advances or improvements in a catalyst’s performance or efficiency would have on the overall energy or carbon (CO2) footprint balance and corresponding greenhouse gas (GHG) emissions of chemical processes and manufacturing technologies. Therefore, this present research was motivated by the premise that the sustainability impact of advances in catalysis science and technology, especially heterogeneous catalysis—the core of large-scale manufacturing processes—must move from a qualitative to a more quantitative form of assessment. This, then, is the exciting challenge of developing a new paradigm for catalysis science which embodies—in a truly quantitative form—its impact on sustainability in chemical, industrial processes. Towards that goal, we present here the concept, definition, design and development of what we term the Catalyst Sensitivity Index (CSI) to provide a measurable index as to how efficiency or performance enhancements of a heterogeneous catalyst will directly impact upon the fossil energy consumption and GHG emissions balance across several prototypical fuel production and conversion technologies, e.g. hydrocarbon fuels synthesized using algae-to-biodiesel, algae-to-jet biofuel, coal-to-liquid and gas-to-liquid processes, together with fuel upgrading processes using fluidized catalytic cracking of heavy oil, hydrocracking of heavy oil and also the production of hydrogen from steam methane reforming. Traditionally, the performance of a catalyst is defined by a combination of its activity or efficiency (its turnover frequency), its selectivity and stability (its turnover number), all of which are direct manifestations of the intrinsic physicochemical properties of the heterogeneous catalyst itself under specific working conditions. We will, of course, retain these definitions of the catalytic process, but now attempt to place discussions about a catalyst’s performance onto a new foundation by investigating the effect of improvements in the catalyst’s efficiency or performance on the resulting total energy and total CO2 footprint for these prototypical fuel production and fuel conversion processes. The CSI should help the academic and industrial chemical communities, not only to highlight the current ‘best practice catalysts’, but also draw specific conclusions as to what energy and CO2 emissions saving one could anticipate with higher efficiency/higher performance from heterogeneous catalysts in a particular fuel synthesis or conversion process or technology. Our aim is to place discussions about advances in the science and technology of catalysis onto a firm foundation in the context of GHG emissions. We believe that thinking about (and attempting to quantify) total energy and CO2 emissions reductions associated with advances in catalysis science from a complete energy life cycle analysis perspective is extremely important. The CSI will help identify processes where the most critical advances in catalyst efficiency are needed in terms of their potential impact in the transition to a more sustainable future for fuel production and conversion technologies.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

Reference70 articles.

1. Thomas JM, Thomas WJ (2015) Principles and practice of heterogeneous catalysis, 2nd edn. Wiley, Hoboken, p 768

2. Freund H-J, Somarjai GA (2015) The frontiers of catalysis science and future challenges. Catal Lett 145:1–481

3. Heveling J (2012) Heterogeneous catalytic chemistry by example of industrial applications. J Chem Educ 89:1530–1536

4. Speight JC (2011) The Refinery of the future. Elsevier, Amsterdam, p 395

5. Kieboom APG et al (1999) Catalytic processes in industry. In: Catalysis: an integrated approach, 2nd edn. pp. 29–80

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation;Separation and Purification Technology;2024-03

2. Data-driven Model Construction;Machine Learning and Hybrid Modelling for Reaction Engineering;2023-12-20

3. Part I: Model Construction Theory;Machine Learning and Hybrid Modelling for Reaction Engineering;2023-12-20

4. Improving catalytic performance via induction heating: selective oxidation of H2S on a nitrogen-doped carbon catalyst as a model reaction;New Journal of Chemistry;2023

5. Current and future perspectives on catalytic-based integrated carbon capture and utilization;Science of The Total Environment;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3