Abstract
AbstractThe knowledge about thermo-mechanical properties of granite is still limited to some extent. Individual measurements are necessary to obtain reliable properties for specific granite types. A reliable numerical model of thermal cracking behaviours of granite exposed to extreme high temperatures (e.g. 800–1000 °C) is missing. In this study, the impact of temperature up to 1000 °C on physical, mechanical, and thermal properties as well as thermo-mechanical coupled behaviour of Eibenstock granite was investigated by laboratory testing and numerical simulations. The physical properties including mineral composition, density, P-wave velocity, and open porosity are measured to be temperature dependent. Uniaxial compression and Brazilian tests were carried out to measure uniaxial compressive strength (UCS), Young’s modulus, stress–strain relationship, and tensile strength of Eibenstock granite before and after thermal treatment, respectively. Thermal properties including specific heat, thermal conductivity, thermal diffusivity, and linear thermal expansion coefficient are also measured and found to be temperature dependent, especially the expansion coefficient which shows a steep increase around 573 °C as well as at 870 °C. The numerical simulation code FLAC3D was used to develop a numerical scheme to simulate the thermal-induced damage of granite at high temperatures. Statistical methods combined with real mineral composition were used to characterize the heterogeneity of granite. The numerical model is featured with reliable temperature-dependent parameters obtained from laboratory tests. It can well reproduce the laboratory results in form of thermal-induced micro- and macrocracks, as well as the stress–strain behaviour and the final failure pattern of Eibenstock granite after elevated temperatures up to 1000 °C. The simulation results also reveal that the thermal-induced microcracks are randomly distributed across the whole sample. Although most thermal-induced damages are tensile failures, shear failure begins to develop quickly after 500 °C. The obvious UCS reduction in granite due to heating is mainly caused by the increase in shear failure. The simulation also shows that the dominant impact of α–β quartz transition is widening pre-existing cracks rather than the formation of new microcracks.
Funder
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Reference41 articles.
1. Bauer SJJ, Johnson B (1979) Effects of slow uniform heating on the physical properties of the westerly and charcoal granites. In: Proceedings of 20th US symposium rock mechanics, pp 7–18
2. Chen W, Konietzky H (2014) Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633:164–175. https://doi.org/10.1016/j.tecto.2014.06.033
3. Chen Y, Wang S, Ni J et al (2017) An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol 220:234–242. https://doi.org/10.1016/j.enggeo.2017.02.010
4. DIN EN 1936 (2007) Natural stone test method—determination of real density and apparent density, and of total and open porosity. Deutsches Institut für Normung [DIN], Berlin, Germany
5. Dwivedi RD, Goel RK, Prasad VVR, Sinha A (2008) Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci 45:303–315. https://doi.org/10.1016/j.ijrmms.2007.05.008
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献