Study on failure characteristics and evaluation index of aquifer shale based on energy evolution

Author:

Qi Xian-yin,Geng Dian-dongORCID,Feng Meng-yao,Xu Ming-zhe

Abstract

AbstractThe presence of abundant clay components and microporous structure in shale results in its high hydrophilicity, making a water-rich environment inevitable in petroleum exploration projects. Therefore, it is crucial to consider the influence of bedding structure, moisture content, confining pressure, and their combined effects on the geomechanical properties of shale. This article aims to investigate the mechanical properties of deep shale under varying water content conditions, elucidate the failure mode and failure mechanism of shale in actual engineering scenarios, and explores the interplay between stress, structure, moisture content, and other factors on its mechanical properties. The evaluation of wellbore stability and fracture propagation effects is proposed based on laboratory experiments using triaxial stress and strain data, along with the application of energy evolution theory. The experimental procedures encompass an analysis of shale's microscopic components and structure, as well as anisotropic shale triaxial compression tests conducted under different moisture contents and confining pressures. The results demonstrate that shale exhibits dense pores in its microstructure and displays pronounced anisotropic characteristics in its macrostructure. The presence of water within these pores, combined with the in situ stress within the formation, significantly influences the mechanical properties of shale. This anisotropy decreases with increasing moisture content, but the mechanical performance still decreases. Under triaxial compression conditions, the increase in confining pressure to some extent enhances the anisotropy of shale's deformation characteristics, which is related to the failure modes of shale. However, the detrimental effect of moisture content on shale's mechanical properties still persists. In order to quantify the impact of these factors, this study utilizes the elastic modulus as an indicator of the coupling effect. It combines the triaxial strain curve obtained from laboratory tests and proposes an evaluation index for shale mechanical properties based on the energy evolution theory. This index is suitable for assessing wellbore stability (the stability index called SIr) and crack expansion (the brittleness index called BIr). The calculation results reveal that, during the wellbore drilling process, excavating parallel to the direction of shale bedding while maintaining low moisture content and high confining pressure yields a higher SIr value, indicating better wellbore stability. On the other hand, during reservoir fracturing, fracturing perpendicular to the shale bedding direction and maintaining low confining pressure and moisture content result in a smaller BIr value. This approach is more beneficial for the expansion of shale fracture network in engineering.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3