An innovative rheological approach for predicting the behaviour of critical zones in a railway track

Author:

Punetha PiyushORCID,Nimbalkar SanjayORCID

Abstract

AbstractThe poor performance of critical zones along a railway line has long been a subject of concern for rail infrastructure managers. The rapid deterioration of track geometry in these zones is primarily ascribed to limited understanding of the underlying mechanism and scarcity of adequate tools to assess the severity of the potential issue. Therefore, a comprehensive evaluation of their behaviour is paramount to improve the design and ensure adequate service quality. With this objective, a novel methodology is introduced, which can predict the differential plastic deformations at the critical zones and assess the suitability of different countermeasures in improving the track performance. The proposed technique employs a three-dimensional geotechnical rheological track model that considers varied support conditions of the critical zone. The approach is successfully validated with published field data and predictions from finite element analysis. This methodology is then applied to a bridge-open track transition zone, where it is observed that an increase in axle load exacerbates the track geometry degradation problem. The results show that the performance of critical zones with weak subgrade can be improved by increasing the granular layer thickness. Interpretation of the predicted differential settlement for different countermeasures exemplifies the practical significance of the proposed methodology.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3