AVISA: anisotropic visco-ISA model and its performance at cyclic loading

Author:

Tafili MeritaORCID,Triantafyllidis Theodoros

Abstract

AbstractIn this work, a constitutive model able to capture the strain rate dependency, small strain effects and the inherent anisotropy is proposed considering the influence of the overconsolidation ratio (OCR). Small strain effects are captured by using an extended ISA plasticity formulation (Fuentes and Triantafyllidis in Int J Numer Anal Methods Geomech 39(11):1235–1254, 2015). The strain rate dependency is reproduced by incorporating a third strain rate mechanism (in addition to the elastic and hypoplastic strain rate). A loading surface has been incorporated to define a three-dimensional (3D) overconsolidation ratio and to account for its effects on the simulations. Experimental investigations using Kaolin Clay and Lower Rhine Clay with horizontal bedding plane have shown that under undrained cycles of small strain amplitudes ($$<10^{-4}$$ < 10 - 4 ), the effective stress path in the p–q space is significantly inclined towards the left upper corner of the $$p - q$$ p - q plane. Consequently, a transversely (hypo)elastic stiffness has been successfully formulated to capture this behaviour. The performance of the model has been inspected by simulating the database of approximately 50 cyclic undrained triaxial (CUT) tests on low-plasticity Kaolin Clay (Wichtmann and Triantafyllidis) considering different deviatoric stress amplitudes, initial stress ratios, displacement rate, overconsolidation ratio and cutting direction. Furthermore, 4 CUT tests conducted on high-plasticity Lower Rhine Clay were simulated, whereby the influence of the displacement rate, as well as the deviatoric stress amplitude, has been analysed. The simulations showed a good congruence with the experimental observations.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3