A coupled hydro-mechanical model for subsurface erosion with analyses of soil piping and void formation

Author:

Scheperboer I. C.,Suiker A. S. J.,Bosco E.,Clemens F. H. L. R.

Abstract

AbstractA coupled hydro-mechanical erosion model is presented that is used for studying soil piping and erosion void formation under practical, in-situ conditions. The continuum model treats the soil as a two-phase porous medium composed of a solid phase and a liquid phase, and accounts for its elasto-plastic deformation behaviour caused by frictional sliding and granular compaction. The kinetic law characterizing the erosion process is assumed to have a similar form as the type of threshold law typically used in interfacial erosion models. The numerical implementation of the coupled hydro-mechanical model is based on an incremental-iterative, staggered update scheme. A one-dimensional poro-elastic benchmark problem is used to study the basic features of the hydro-mechanical erosion model and validate its numerical implementation. This problem is further used to reveal the interplay between soil erosion and soil consolidation processes that occur under transient hydro-mechanical conditions, thereby identifying characteristic time scales of these processes for a sandy material. Subsequently, two practical case studies are considered that relate to a sewer system embedded in a sandy soil structure. The first case study treats soil piping caused by suffusion near a sewer system subjected to natural ground water flow, and the second case study considers the formation of a suffosion erosion void under strong ground water flow near a defect sewer pipe. The effects on the erosion profile and the soil deformation behaviour by plasticity phenomena are elucidated by comparing the computational results to those obtained by modelling the constitutive behaviour of the granular material as elastic. The results of this comparison study point out the importance of including an advanced elasto-plastic soil model in the numerical simulation of erosion-driven ground surface deformations and the consequent failure behaviour. The numerical analyses further illustrate that the model realistically predicts the size, location, and characteristic time scale of the generated soil piping and void erosion profiles. Hence, the modelling results may support the early detection of in-situ subsurface erosion phenomena from recorded ground surface deformations. Additionally, the computed erosion profiles may serve as input for a detailed analysis of the local, residual bearing capacity and stress redistribution of buried concrete pipe systems.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3