Shear strength recovery of sand with self-healing polymeric capsules

Author:

Qi Rui,Chen Ke,Lin Hongjie,Kanellopoulos Antonios,Deyun Liu,Leung Anthony Kwan,Lourenço Sérgio D. N.ORCID

Abstract

AbstractSelf-healing approaches are increasingly being explored in various fields as a potential method to recover damaged material properties. By self-recovering without external intervention, self-healing techniques emerge as a potential solution to arrest or prevent the development of large strains problems in soils (e.g., landslides) and other ground effects that influence the serviceability of structures (e.g., differential settlement). In this study, a microcapsule-based self-healing sand was developed, and its performance during mixing and compaction, shearing, and recovery of shear strength was demonstrated. The cargo used for sand improvement, a hardening oil, tung oil, was encapsulated in calcium alginate capsules by the ionic gelation method. The surface properties, internal structure, thermal stability and molecular structure of the capsules were evaluated by advanced material characterization techniques. The survivability of capsules during mixing and compaction was assessed by measuring the content of tung oil released into the sand, while their influence on sand shear strength and its recovery was assessed with shear box tests. The results showed that the capsules could rupture due to movement of the sand particles, releasing the tung oil cargo, leading to its hardening and minimizing its strain-softening response and enhancing up to 76% of the sand shear strength (at a normal stress of 10 kPa and capsules content of 4%). This study demonstrates the potential of a capsules-based self-healing system to provide ‘smart’ autonomous soil strength recovery and thus with potential to actively control the large strain behavior of soils.

Funder

Research Grants Council, University Grants Committee

Royal Society

University Research Committee, University of Hong Kong

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3