Abstract
AbstractA number of discrete element analyses of undrained triaxial shear tests on crushable assemblies are performed using 3-dimensional particle flow code (PFC3D). The undrained shear of the samples is simulated by assigning different velocities at the boundaries to control the constant volume of the samples during the shear. Particle breakage is studied using the octahedral shear stress breakage criterion and the fragment spawning mode satisfying an Apollonian sphere packing. The microparameters of the soils are obtained by simulating the test results reported on a Nansha calcareous sand. The effects of particle breakage and drainage condition on the critical state behaviours of the sand are intensively examined. It is found that particle breakage and drainage condition do not affect the slope of the critical state p′−q line. In the ecs−(p′cs/pa)0.7 space, the critical state line translates downward and rotates clockwise when particle breakage is considered, whilst drainage condition does not affect the critical state line. The intrinsic macro–micro correlations underlying the critical state behaviours are explored by analysing the evolution of representative micromechanical indicators such as coordination number, redundancy ratio, and fabric and force anisotropies.
Funder
National Nature Science Foundation of China
Capacity Improvement Project for Municipal Universities in Shanghai
University of New South Wales
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献