A device for rainfall simulation in geotechnical centrifuges

Author:

Wang ShunORCID,Idinger Gregor

Abstract

AbstractRainfall-induced slope instabilities are ubiquitous in nature, but simulation of this type of hazards with centrifuge modelling still poses difficulties. In this paper, we introduce a rainfall device for initiating slope failure in a medium-sized centrifuge. This rainfall system is simple, robust and affordable. An array of perforated hoses is placed close above the model slope surface to generate the raindrops. The rainfall intensity depends on the centrifuge acceleration and the flow rate of the water supply, which is controlled by the size and number of the tiny pinholes in the hose walls. The rainfall intensities that are tested range from 2.5–30 mm/h, covering the intensity range of moderate, heavy and torrential rainfall events. Our model test with rainfall-induced slope failure shows that this system is capable of generating relatively uniform rainfall of wide intensities and leads to various patterns of slope failure.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3