Monotonic and cyclic triaxial testing of untreated and polyurethane-treated soil and soil–rubber mixtures

Author:

Farooq Mohammad AdnanORCID,Nimbalkar SanjayORCID

Abstract

AbstractThe present research focuses on developing alternate sustainable base materials for a high-speed slab track. In this study, a series of monotonic triaxial, cyclic triaxial and permeability tests were conducted on four types of materials, viz. mix-A (gravel soil), mix-B (soil mixed with rubber), mix-C (polyurethane foam adhesive (PFA)-treated soil), and mix-D (PFA-treated soil–rubber mixture). The influence of cyclic loading frequency, effective confining pressure, drainage condition and relative density on the deformation, excess pore water pressure, resilient modulus and damping ratio of these different mixes is evaluated. The monotonic triaxial test results indicate that the PFA treatment of mix-A and mix-B increased their shear strength and critical state strength. In contrast, incorporating rubber into mix-A and mix-C helped enhance their ductility. The cyclic triaxial test results show that the PFA treatment of mix-A and mix-B significantly reduced the magnitude of deformation and generation of excess pore water pressure, which caused these untreated mixes to fail prematurely under lower confinement to which a typical base layer is subjected. The influence of cyclic loading frequency and effective confining pressure on the material's response differed for untreated and treated soil. The permeability test results indicate good drainage for mix-D comparable to mix-A.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of the carrying capacity of single polyurethane foam pile in clay and sand soils;Journal of Umm Al-Qura University for Engineering and Architecture;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3