Use of interaction domains for a displacement-based design of caisson foundations

Author:

Rosati A.ORCID,Gaudio D.ORCID,di Prisco C.ORCID,Rampello S.ORCID

Abstract

AbstractCaisson foundations, typically adopted for both onshore and offshore structures, are usually subject to combined loading acting during working conditions and exceptional events such as earthquakes. Assessment of their performance under general loadings is therefore fundamental, for both serviceability and ultimate limit states. In this study, a simplified displacement-based approach, aimed at preliminary designing caisson foundations subjected to combined loading, is presented. Such an approach requires the definition of both interaction domains (IDs) and generalised pushover curves, together with the assumption of an associative flow rule. The IDs and pushover curves are obtained by interpreting the results of a set of 3D finite element nonlinear static analyses, where the response of massive cylindrical onshore caisson foundations, embedded in a layered soil profile and subjected to both centred vertical (N) and combined loads (NQM), is investigated. Following previous works, the influence of initial loading factor and caisson embedment ratio on both IDs shape and size is investigated. Additionally, the effect of soil drainage conditions on the IDs is discussed. Role of load reference point (LRP) is also assessed, since a suitable choice of LRP may strongly simplify the geometrical representation of the ID. Analytical expressions for dimensionless IDs and pushover curves are presented and used at a preliminary design stage to evaluate the maximum generalised load acting on the caisson for a given threshold generalised displacement, so as not to exceed either serviceability or ultimate limit states.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3