Hydraulic hysteresis of natural pyroclastic soils in partially saturated conditions: experimental investigation and modelling

Author:

Dias Ana Sofia,Pirone Marianna,Nicotera Marco Valerio,Urciuoli Gianfranco

Abstract

AbstractIn many geotechnical applications, especially in the study of weather-induced landslides, a reliable soil hydraulic characterization in unsaturated conditions is required. Currently, the experimental techniques that neglect the hydraulic hysteresis represent the greatest limitation to landslide forecasting. In this paper, a procedure to obtain an unsaturated soil hydraulic characterization on natural pyroclastic samples is proposed and verified. The approach enables the evaluation of the soil hydraulic properties along the main drying path and wetting/drying cycles to fully quantify the effects of the hydraulic hysteresis. Pyroclastic soil samples collected at a test site at Mount Faito in the Campania region (southern Italy) were tested. The experimental investigation consisted of a sequence of testing phases: a constant-head hydraulic conductivity test, a forced evaporation test followed by several wetting–drying cycles, and a drying test in a pressure plate apparatus. The hysteretic model proposed by Parker and Lenhard (1987) was adopted to fit the data, while inverse modelling of the forced evaporation tests allowed to derive the model parameters. Therefore, the main drying and wetting branches and the soil response to drying and wetting cycles from any reversal point were reproduced with the model, which suitably described the hysteretic behaviour of the pyroclastic soil under all conditions and along all paths.

Funder

PRIN 2015 '‘INNOVATIVE MONITORING AND DESIGN STRATEGIES FOR SUSTAINABLE LANDSLIDE RISK MITIGATION’ '

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3