Cyclic stress–dilatancy relations and plastic flow potentials for soils based on hypothesis of complementarity of stress–dilatancy conjugates

Author:

Tsegaye Anteneh Biru

Abstract

AbstractSoil, rocks and rock masses dilate or compact when sheared, i.e., distortion necessitates volume change. This coupling between distortional strains and volumetric strains, described by stress–dilatancy theories, endows soils with manifestation of peculiar characteristics when they are subjected to shear. Stress–dilatancy theories have become central in describing the mechanical energy dissipation mechanism and further establishing flow rules in constitutive modelling of soils. The classical stress–dilatancy theories, such as Taylor's and Rowe's, are endowed with simplicity and descriptive power, but they were developed for describing the dilatancy behaviour of soils subjected to loading in shear (mobilizing away from isotropic stress state) and needed to be extended for describing plastic dissipation and shear-induced volumetric changes when soils are subjected to cyclic shear. In this paper, hypothesis of complementarity of stress–dilatancy conjugates is proposed as a unifying hypothesis for deriving stress–dilatancy relations for both loading in shear and unloading in shear. Then, plastic potential functions are derived based on the resulting stress–dilatancy relations. In so doing, the resulting stress–dilatancy relations and plastic potential functions are rendered with a quality to be used for the modelling of deformation behavior of soils subjected to both monotonic and cyclic shearing. The theoretical framework is applied first for plane strain and axisymmetric stress–strain conditions; and then extended for the general stress condition considering the Lode angle dependency of the shear strength of soils, using the multilaminate framework and applying the Matsuoka–Nakai spatial mobilized plane.

Funder

Norwegian Geotechnical Institute

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference46 articles.

1. Bardet JP (1990) Lode dependences for isotropic pressure-sensitive elasto-plastic materials. Soils Found 57(9):498–506

2. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

3. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

4. Casagrande A (1936) Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J Boston Soc Civ Eng

5. Collins IF, Kelly PA (2002) A thermomechanical analysis of a family of soil models. Géotechnique 52(7):507–518

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3