A state-dependent hyperelastic-plastic constitutive model considering shear-induced particle breakage in granular soils

Author:

Irani Nazanin,Lashkari Ali,Tafili MeritaORCID,Wichtmann Torsten

Abstract

AbstractAn elastic–plastic constitutive model considering particle breakage for simulation of crushable granular soils behavior is proposed. In the model, elastic strain rates are derived from a modified Helmholtz free energy function, and the influence of plastic shear work-induced particle breakage on the elastic properties of sand is taken into account as an elastic–plastic coupling mechanism. A stress ratio-driven mechanism is employed for calculation of the plastic strain rates. The proposed model is capable of tracking the evolution of the grain size distribution (GSD) due to shear-induced particle breakage. The evolving breakage index of Einav (2007) (J Mech Phys Solids 55(6):1274–1297, 2007) is interrelated to the plastic shear work to avoid overestimation of shear-induced particle breakage in loose sands. A direct comparison between the model simulations and laboratory data has been carried out for five series of drained/undrained monotonic and cyclic triaxial tests covering a wide range of initial states. For the sake of comparison, predicted behaviors from a hypoplastic constitutive model specially developed for crushable granular soils are also included. It is shown that the proposed constitutive model can provide reasonable predictions using a single set of parameters for each series of the laboratory data.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3