Nonlocal regularization of an anisotropic critical state model for sand

Author:

Gao ZhiweiORCID,Li Xin,Lu Dechun

Abstract

AbstractMany advanced constitutive models which can capture the strain-softening and state-dependent dilatancy response of sand have been developed. These models can give good prediction of the single soil element behaviour under various loading conditions. But the solution will be highly mesh-dependent when they are used in real boundary value problems due to the strain-softening. They can give mesh-dependent strain localization pattern and bearing capacity of foundations on sand. Nonlocal regularization of an anisotropic critical state sand model is presented. The evolution of void ratio which has a significant influence on strain-softening is assumed to depend on the volumetric strain increment of both the local and neighbouring integration points. The regularization method has been implemented using the explicit stress integration method. The nonlocal model has been used in simulating both drained plane strain compression and the response of a strip footing on dry sand. In plane strain compression, mesh-independent results for the force–displacement relationship and shear band thickness can be obtained when the mesh size is smaller than the internal length. The force–displacement relationship of strip footings predicted by the nonlocal model is much less mesh-sensitive than the local model prediction. The strain localization under the strip footing predicted by the nonlocal model is mesh independent. The regularization method is thus proper for application in practical geotechnical engineering problems.

Funder

Key Programme

University of Glasgow

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3