Synthesizing adaptive test strategies from temporal logic specifications

Author:

Bloem Roderick,Fey Goerschwin,Greif Fabian,Könighofer Robert,Pill Ingo,Riener Heinz,Röck FranzORCID

Abstract

AbstractConstructing good test cases is difficult and time-consuming, especially if the system under test is still under development and its exact behavior is not yet fixed. We propose a new approach to compute test strategies for reactive systems from a given temporal logic specification using formal methods. The computed strategies are guaranteed to reveal certain simple faults ineveryrealization of the specification and foreverybehavior of the uncontrollable part of the system’s environment. The proposed approach supports different assumptions on occurrences of faults (ranging from a single transient fault to a persistent fault) and by default aims at unveiling the weakest one. We argue that such tests are also sensitive for more complex bugs. Since the specification may not define the system behavior completely, we use reactive synthesis algorithms with partial information. The computed strategies areadaptive test strategiesthat react to behavior at runtime. We work out the underlying theory of adaptive test strategy synthesis and present experiments for a safety-critical component of a real-world satellite system. We demonstrate that our approach can be applied to industrial specifications and that the synthesized test strategies are capable of detecting bugs that are hard to detect with random testing.

Funder

Horizon 2020

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive testing for specification coverage and refinement in CPS models;Nonlinear Analysis: Hybrid Systems;2022-11

2. Complexity of adaptive testing in scenarios defined extensionally;Frontiers of Computer Science;2022-10-22

3. Schema-guided Testing of Message-oriented Systems;Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering;2022

4. Design and Realization of Basketball Tactics Computer Aided Teaching System;2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City;2022

5. Adaptive Testing for Specification Coverage in CPS Models;IFAC-PapersOnLine;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3