Vacuity in synthesis

Author:

Bloem Roderick,Chockler Hana,Ebrahimi Masoud,Strichman OferORCID

Abstract

AbstractIn reactive synthesis, one begins with a temporal specification $$\varphi $$ φ , and automatically synthesizes a system $$M$$ M such that $$M\models \varphi $$ M φ . As many systems can satisfy a given specification, it is natural to seek ways to force the synthesis tool to synthesize systems that are of a higher quality, in some well-defined sense. In this article we focus on a well-known measure of the way in which a system satisfies its specification, namely vacuity. Our conjecture is that if the synthesized system M satisfies $$\varphi $$ φ non-vacuously, then M is likely to be closer to the user’s intent, because it satisfies $$\varphi $$ φ in a more “meaningful” way. Narrowing the gap between the formal specification and the designer’s intent in this way, automatically, is the topic of this article. Specifically, we propose a bounded synthesis method for achieving this goal. The notion of vacuity as defined in the context of model checking, however, is not necessarily refined enough for the purpose of synthesis. Hence, even when the synthesized system is technically non-vacuous, there are yet more interesting (equivalently, less vacuous) systems, and we would like to be able to synthesize them. To that end, we cope with the problem of synthesizing a system that is as non-vacuous as possible, given that the set of interesting behaviours with respect to a given specification induce a partial order on transition systems. On the theoretical side we show examples of specifications for which there is a single maximal element in the partial order (i.e., the most interesting system), a set of equivalent maximal elements, or a number of incomparable maximal elements. We also show examples of specifications that induce infinite chains of increasingly interesting systems. These results have implications on how non-vacuous the synthesized system can be. We implemented the new procedure in our synthesis tool PARTY. For this purpose we added to it the capability to synthesize a system based on a property which is a conjunction of universal and existential LTL formulas.

Funder

Technische Universität Graz

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Realizability modulo theories;Journal of Logical and Algebraic Methods in Programming;2024-08

2. Boolean Abstractions for Realizability Modulo Theories;Computer Aided Verification;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3