Abstract
AbstractMissiles and sounding rockets usually deviate from the trajectory due to unstable roll. Fins with cant angles are generally used to provide a rolling moment in sounding rockets and missiles to minimize the instability. Inducing a rolling moment also leads to an increase in the rocket motor’s power consumption due to the rise in drag, so inducing an optimal rolling moment with a minimal increase in drag is a crucial design criterion. It is crucial to maintain the similarity parameters while testing a scaled-down model in a wind tunnel. Therefore, computational fluid dynamics (CFD) is more efficient than extensive wind tunnel tests. In this paper, three-dimensional, incompressible simulations were performed on different models of sounding rockets using commercial CFD package fluent. The simulations were performed with the help of $$k-\epsilon $$
k
-
ϵ
standard turbulence model. The results obtained were tabulated and graphically represented, and the trends of aerodynamic coefficients like $$C_{\text {d}}$$
C
d
and $$C_{\text {m}}$$
C
m
were analyzed. The purpose of this study is to analyze the dependency of aerodynamic coefficients on different fin configurations with emphasis on the cant angle. This study will be helpful to researchers designing a sounding rocket and help in maximizing apogee. The experimental and computational results show a favourable comparison. The results will show a particular configuration of fin having greater $$C_{\text {m}}/C_{\text {d}}$$
C
m
/
C
d
which yields in a greater rolling moment and least amount of drag.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Computers in Earth Sciences,Mechanical Engineering,Social Sciences (miscellaneous),Aerospace Engineering,Control and Systems Engineering
Reference25 articles.
1. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, 2nd edn. Pearson Education Limited, Harlow
2. Rodi W (1982) Examples of turbulence models for incompressible flows. AIAA J 20:872–879. https://doi.org/10.2514/3.51146
3. Poroseva S, Bézard H (2001) On Ability of Standard k Model to Simulate Aerodynamic 298 Turbulent Flows. CFD Journal Volume 8. 464–470
4. Smith J, Cullina J (2011) CFD assessment of fin manufacturing defect to set fin cant angle and achieve nominal roll rate. https://doi.org/10.2514/6.2011-3665
5. Stamminger A, Turner J, Hörschgen-Eggers M, Jung W (2005) Sounding rockets as a real flight platform for aerothermodynamic CFD validation of hypersonic experiments 563.431–438
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献