A spatiotemporal transferable image fusion technique for GeoEye-1 satellite imagery

Author:

Elshora MohamedORCID

Abstract

AbstractThis study proposed a novel technique to solve the problem of color distortion in the fusion of the GeoEye-1 satellite's panchromatic (PAN) and multispectral (MS) images. This technique suggested reducing the difference in radiometry between the PAN and MS images by using modification coefficients for the MS bands in the definition of the intensity (I) equation, which guarantees using only the overlapped wavelengths with the PAN band. These modification coefficients achieve spatiotemporal transferability for the proposed fusion technique. As the reflectance of vegetation is high in the NIR band and low in the RGB bands, this technique suggested using an additional coefficient for the NIR band in the definition of the I equation, which varies based on the ratio of the agricultural features within the image, to indicate the correct impact of vegetation. This vegetation coefficient provides stability for the proposed fusion technique across all land cover classes. This study used three datasets of GeoEye-1 satellite PAN and MS images in Tanta City, Egypt, with different land cover classes (agricultural, urban, and mixed areas), to evaluate the performance of this technique against five different standard image fusion techniques. In addition, it was validated using six additional datasets from different locations and acquired at different times to test its spatiotemporal transferability. The proposed fusion technique demonstrated spatiotemporal transferability as well as great efficiency in producing fused images of superior spatial and spectral quality for all types of land cover.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Computers in Earth Sciences,Mechanical Engineering,Social Sciences (miscellaneous),Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3