Abstract
Abstract
Background
Osteoarthritis is the most prevalent type of arthritis. Many approaches exist for characterising radiographic knee OA, including machine learning (ML).
Aims
To examine Kellgren and Lawrence (K&L) scores from ML and expert observation, minimum joint space and osteophyte in relation to pain and function.
Methods
Participants from the Hertfordshire Cohort Study, comprising individuals born in Hertfordshire from 1931 to 1939, were analysed. Radiographs were assessed by clinicians and ML (convolutional neural networks) for K&L scoring. Medial minimum joint space and osteophyte area were ascertained using the knee OA computer-aided diagnosis (KOACAD) program. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was administered. Receiver operating characteristic analysis was implemented for minimum joint space, osteophyte, and observer- and ML-derived K&L scores in relation to pain (WOMAC pain score > 0) and impaired function (WOMAC function score > 0).
Results
359 participants (aged 71–80) were analysed. Among both sexes, discriminative capacity regarding pain and function was fairly high for observer-derived K&L scores [area under curve (AUC): 0.65 (95% CI 0.57, 0.72) to 0.70 (0.63, 0.77)]; results were similar among women for ML-derived K&L scores. Discriminative capacity was moderate among men for minimum joint space in relation to pain [0.60 (0.51, 0.67)] and function [0.62 (0.54, 0.69)]. AUC < 0.60 for other sex-specific associations.
Discussion
Observer-derived K&L scores had higher discriminative capacity regarding pain and function compared to minimum joint space and osteophyte. Among women, discriminative capacity was similar for observer- and ML-derived K&L scores.
Conclusion
ML as an adjunct to expert observation for K&L scoring may be beneficial due to the efficiency and objectivity of ML.
Publisher
Springer Science and Business Media LLC
Subject
Geriatrics and Gerontology,Aging
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献