Automating anticorruption?

Author:

Ceva EmanuelaORCID,Jiménez María Carolina

Abstract

AbstractThe paper explores some normative challenges concerning the integration of Machine Learning (ML) algorithms into anticorruption in public institutions. The challenges emerge from the tensions between an approach treating ML algorithms as allies to an exclusively legalistic conception of anticorruption and an approach seeing them within an institutional ethics of office accountability. We explore two main challenges. One concerns the variable opacity of some ML algorithms, which may affect public officeholders’ capacity to account for institutional processes relying upon ML techniques. The other pinpoints the risk that automating certain institutional processes may weaken officeholders’ direct engagement to take forward-looking responsibility for the working of their institution. We discuss why both challenges matter to see how ML algorithms may enhance (and not hinder) institutional answerability practices.

Funder

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications

Reference94 articles.

1. Aarvik, P. (2019). Artificial Intelligence: a promising anti-corruption tool in development settings? U4 Report 2019:1. Anti-Corruption Resource Centre. Retrieved May 3, 2021, from https://www.u4.no/publications/artificial-intelligence-a-promising-anti-corruption-tool-in-development-settings

2. AI NOW Report. (2018). Retrieved May 3, 2021, from https://ainowinstitute.org/AI_Now_2018_Report.pdf

3. Ajunwa, I. (2020). The paradox of automation and anti-bias intervention. Cardozo Law Review, 41, 1671.

4. Algorithm Watch. (2019). Automating Society Report. Taking Stock of Automated Decision-Making in the EU. Retrieved May 3, 2021, from https://algorithmwatch.org/en/automating-society-2019/

5. Algorithm Watch. (2020). Automating Society Report. Retrieved May 3, 2021, from https://automatingsociety.algorithmwatch.org

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3