Abstract
AbstractRecently, there has been considerable interest in large language models: machine learning systems which produce human-like text and dialogue. Applications of these systems have been plagued by persistent inaccuracies in their output; these are often called “AI hallucinations”. We argue that these falsehoods, and the overall activity of large language models, is better understood as bullshit in the sense explored by Frankfurt (On Bullshit, Princeton, 2005): the models are in an important way indifferent to the truth of their outputs. We distinguish two ways in which the models can be said to be bullshitters, and argue that they clearly meet at least one of these definitions. We further argue that describing AI misrepresentations as bullshit is both a more useful and more accurate way of predicting and discussing the behaviour of these systems.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Alkaissi, H., & McFarlane, S. I., (2023, February 19). Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus, 15(2), e35179. https://doi.org/10.7759/cureus.35179.
2. Bacin, S. (2021). My duties and the morality of others: Lying, truth and the good example in Fichte’s normative perfectionism. In S. Bacin, & O. Ware (Eds.), Fichte’s system of Ethics: A critical guide. Cambridge University Press.
3. Cassam, Q. (2019). Vices of the mind. Oxford University Press.
4. Cohen, G. A. (2002). Deeper into bullshit. In S. Buss, & L. Overton (Eds.), The contours of Agency: Essays on themes from Harry Frankfurt. MIT Press.
5. Davis, E., & Aaronson, S. (2023). Testing GPT-4 with Wolfram alpha and code interpreter plub-ins on math and science problems. Arxiv Preprint: arXiv, 2308, 05713v2.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献