Addressing inequal risk exposure in the development of automated vehicles

Author:

Dietrich ManuelORCID

Abstract

AbstractAutomated vehicles (AVs) are expected to operate on public roads, together with non-automated vehicles and other road users such as pedestrians or bicycles. Recent ethical reports and guidelines raise worries that AVs will introduce injustice or reinforce existing social inequalities in road traffic. One major injustice concern in today’s traffic is that different types of road users are exposed differently to risks of corporal harm. In the first part of the paper, we discuss the responsibility of AV developers to address existing injustice concerns regarding risk exposure as well as approaches on how to fulfill the responsibility for a fairer distribution of risk. In contrast to popular approaches on the ethics of risk distribution in unavoidable accident cases, we focus on low and moderate risk situations, referred to as routine driving. For routine driving, the obligation to distribute risks fairly must be discussed in the context of risk-taking and risk-acceptance, balancing safety objectives of occupants and other road users with driving utility. In the second part of the paper, we present a typical architecture for decentralized automated driving which contains a dedicated module for real-time risk estimation and management. We examine how risk estimation modules can be adjusted and parameterized to redress some inequalities.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications

Reference49 articles.

1. AI High Level Expert Group. (2019). Ethics guidelines for trustworthy AI. Publication Office of the European Union.

2. Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The Moral Machine experiment. Nature, 563, 59–64. https://doi.org/10.1038/s41586-018-0637-6.

3. Bonnefon, J. F., Shariff, A., & Rahwan, I. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573–1576. https://doi.org/10.1126/science.aaf2654.

4. Broome, J. (1984). Selecting people randomly. Ethics, 95(1), 38–55.

5. Chen, Y., Yang, J., & Otte, D. (2010). Load and impact conditions for head injuries in car-to-pedestrian and car-to-cyclist accidents. Proceedings of the Expert Symposium on Accident Research, 294–308.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3