How can we know a self-driving car is safe?

Author:

Stilgoe JackORCID

Abstract

AbstractSelf-driving cars promise solutions to some of the hazards of human driving but there are important questions about the safety of these new technologies. This paper takes a qualitative social science approach to the question ‘how safe is safe enough?’ Drawing on 50 interviews with people developing and researching self-driving cars, I describe two dominant narratives of safety. The first, safety-in-numbers, sees safety as a self-evident property of the technology and offers metrics in an attempt to reassure the public. The second approach, safety-by-design, starts with the challenge of safety assurance and sees the technology as intrinsically problematic. The first approach is concerned only with performance—what a self-driving system does. The second is also concerned with why systems do what they do and how they should be tested. Using insights from workshops with members of the public, I introduce a further concern that will define trustworthy self-driving cars: the intended and perceived purposes of a system. Engineers’ safety assurances will have their credibility tested in public. ‘How safe is safe enough?’ prompts further questions: ‘safe enough for what?’ and ‘safe enough for whom?’

Funder

Economic and Social Research Council

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Does Simulation-Based Testing for Self-Driving Cars Match Human Perception?;Proceedings of the ACM on Software Engineering;2024-07-12

2. Resistance towards autonomous vehicles (AVs);Transportation Research Interdisciplinary Perspectives;2024-07

3. The problem with Pod Man;Mobilities;2024-05-13

4. Acceptance of Highly Automated Vehicles: The Role of Facilitating Condition, Technology Anxiety, Social Influence and Trust;International Journal of Human–Computer Interaction;2024-02-20

5. A Comprehensive Review on Limitations of Autonomous Driving and Its Impact on Accidents and Collisions;IEEE Open Journal of Vehicular Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3