Time-Varying Functional Principal Components for Non-Stationary EpCO$$_2$$ in Freshwater Systems

Author:

Elayouty AmiraORCID,Scott Marian,Miller Claire

Abstract

AbstractOutgassing of carbon dioxide (CO$$_2$$ 2 ) from river surface waters, estimated using partial pressure of dissolved CO$$_2$$ 2 , has recently been considered an important component of the global carbon budget. However, little is still known about the high-frequency dynamics of CO$$_2$$ 2 emissions in small-order rivers and streams. To analyse such highly dynamic systems, we propose a time-varying functional principal components analysis (FPCA) for non-stationary functional time series (FTS). This time-varying FPCA is performed in the frequency domain to investigate how the variability and auto-covariance structures in a FTS change over time. This methodology, and the associated proposed inference, enables investigation of the changes over time in the variability structure of the diurnal profiles of the partial pressure of CO$$_2$$ 2 and identification of the drivers of those changes. By means of a simulation study, the performance of the time-varying dynamic FPCs is investigated under different scenarios of complete and incomplete FTS. Although the time-varying dynamic FPCA has been applied here to study the daily processes of consuming and producing CO$$_2$$ 2 in a small catchment of the river Dee in Scotland, this methodology can be applied more generally to any dynamic time series.Supplementary materials accompanying this paper appear online.

Funder

University of Glasgow

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3