Spatial Confounding and Spatial+ for Nonlinear Covariate Effects

Author:

Dupont EmikoORCID,Augustin Nicole H.ORCID

Abstract

AbstractRegression models for spatially varying data use spatial random effects to reflect spatial correlation structure. Such random effects, however, may interfere with the covariate effect estimates and make them unreliable. This problem, known as spatial confounding, is complex and has only been studied for models with linear covariate effects. However, as illustrated by a forestry example in which we assess the effect of soil, climate, and topography variables on tree health, the covariate effects of interest are in practice often unknown and nonlinear. We consider, for the first time, spatial confounding in spatial models with nonlinear effects implemented in the generalised additive models (GAMs) framework. We show that spatial+, a recently developed method for alleviating confounding in the linear case, can be adapted to this setting. In practice, spatial+ can then be used both as a diagnostic tool for investigating whether covariate effect estimates are affected by spatial confounding and for correcting the estimates for the resulting bias when it is present. Supplementary materials accompanying this paper appear online.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Reference32 articles.

1. Augustin N, A. Albrecht K, Anaya-Izquierdo Davis A, Meining S, Puhlmann H, Wood S (2022) Modelling tree survival for investigating climate change effects. arXiv preprint arXiv:2210:02247

2. Clayton DG, Bernardinelli L, Montomoli C (1993) Spatial correlation in ecological analysis. Int J Epidemiol 22(6):1193–1202

3. Damman I, Herrman T, Körver F, Schröck H, Ziegler C (2001) Dauerbeobachtungsflächen Waldschäden im Level II-Programm - Methoden und Ergebnisse der Kronenansprache seit 1983. Bund-Länder-Arbeitsgruppe Level II / Arbeitskreis Krone. BMVEL, Bonn

4. de Vries W, Vel E, Reinds G, Deelstra H, Klap J, Leeters E, Hendriks C, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman J (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy 174(1)

5. Dietrich H, Wolf T, Kawohl T, Wehberg J, Kändler G, Mette T, Röder A, Böhner J (2019) Temporal and spatial high-resolution climate data from 1961 to 2100 for the german national forest inventory (nfi). Ann For Sci 76(1):1–14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3