Nonparametric Conditional Risk Mapping Under Heteroscedasticity

Author:

Fernández-Casal RubénORCID,Castillo-Páez SergioORCID,Francisco-Fernández MarioORCID

Abstract

AbstractA nonparametric procedure to estimate the conditional probability that a nonstationary geostatistical process exceeds a certain threshold value is proposed. The method consists of a bootstrap algorithm that combines conditional simulation techniques with nonparametric estimations of the trend and the variability. The nonparametric local linear estimator, considering a bandwidth matrix selected by a method that takes the spatial dependence into account, is used to estimate the trend. The variability is modeled estimating the conditional variance and the variogram from corrected residuals to avoid the biasses. The proposed method allows to obtain estimates of the conditional exceedance risk in non-observed spatial locations. The performance of the approach is analyzed by simulation and illustrated with the application to a real data set of precipitations in the USA.Supplementary materials accompanying this paper appear on-line.

Funder

Ministerio de Ciencia e Innovación

Xunta de Galicia

Universidad de las Fuerzas Armadas ESPE

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Reference21 articles.

1. Castillo-Páez S, Fernández-Casal R, García-Soidán P (2020) Nonparametric bootstrap approach for unconditional risk mapping under heteroscedasticity. Spat Stat 40(100):389

2. Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York

3. Cressie N (1993) Statistics for spatial data. Wiley, New York

4. Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London

5. Fan J, Yao Q (1998) Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85(3):645–660

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3