Judgment Post-stratified Assessment Combining Ranking Information from Multiple Sources, with a Field Phenotyping Example

Author:

Ozturk OmerORCID,Kravchuk OlenaORCID

Abstract

AbstractThis paper presents novel estimators for a judgment post-stratified (JPS) sample, which combine the ranking information from different methods or rankers. A JPS sample divides the units in the original simple random sample (SRS) into several ranking groups based on the relative positions (ranks) of the units in their individual small comparison sets. Ranks in the comparison sets may be assigned with several different ranking procedures. When considered separately, each ranking method leads to a different JPS sample estimator of the population mean or total. Here we introduce equally or unequally weighted estimators, which combine the ranking information from multiple sources. The unequal weights utilize the standard errors of the individual ranking methods estimators. The weighted estimators provide a substantial improvement over an SRS estimator and a JPS estimator based on a single ranking method. The new estimators are applied to crop establishment phenotypic data from an agricultural field experiment.Supplementary materials accompanying this paper appear online.

Funder

Australian Grain Research and Development Corporation

South Australian Grain Industry Trust Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Row–Column Sampling Design Using Auxiliary Ranking Variables;Journal of Agricultural, Biological and Environmental Statistics;2022-08-23

2. Judgment Post-stratified Sampling with Multiple Ranking: A Comparison with Ranked Set Sampling;Recent Advances on Sampling Methods and Educational Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3