A Generic Method for Estimating and Smoothing Multispecies Biodiversity Indicators Using Intermittent Data

Author:

Freeman Stephen N.,Isaac Nicholas J. B.ORCID,Besbeas Panagiotis,Dennis Emily B.,Morgan Byron J. T.

Abstract

AbstractBiodiversity indicators summarise extensive, complex ecological data sets and are important in influencing government policy. Component data consist of time-varying indices for each of a number of different species. However, current biodiversity indicators suffer from multiple statistical shortcomings. We describe a state-space formulation for new multispecies biodiversity indicators, based on rates of change in the abundance or occupancy probability of the contributing individual species. The formulation is flexible and applicable to different taxa. It possesses several advantages, including the ability to accommodate the sporadic unavailability of data, incorporate variation in the estimation precision of the individual species’ indices when appropriate, and allow the direct incorporation of smoothing over time. Furthermore, model fitting is straightforward in Bayesian and classical implementations, the latter adopting either efficient Hidden Markov modelling or the Kalman filter. Conveniently, the same algorithms can be adopted for cases based on abundance or occupancy data—only the subsequent interpretation differs. The procedure removes the need for bootstrapping which can be prohibitive. We recommend which of two alternatives to use when taxa are fully or partially sampled. The performance of the new approach is demonstrated on simulated data, and through application to three diverse national UK data sets on butterflies, bats and dragonflies. We see that uncritical incorporation of index standard errors should be avoided.Supplementary materials accompanying this paper appear online.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Reference37 articles.

1. August, T. A., Powney, G., Outhwaite, C. L., Hatfield, J., Logie, M., Freeman, S. N., et al. (2020). BRCindicators: creating multispecies biodiversity indicators. R package version 1.3.6. https://github.com/BiologicalRecordsCentre/BRCindicators.

2. Barlow, K. E., Briggs, P. A., Haysom, K. A., Hutson, A. M., Lechiara, N. L., Racey, P. A., et al. (2015). Citizen science reveals trends in bat populations: the National Bat Monitoring Programme in Great Britain. Biological Conservation, 182:14–26.

3. Barlow, K. E., Briggs, P. A., Haysom, K. A., Hutson, A. M.,Lechiara, N. L., Racey, P. A., et al. (2015). Citizen science reveals trends in bat populations: the National Bat Monitoring Programme in Great Britain. Biological Conservation, 182:14–26.

4. Besbeas, P. and Morgan, B. J. T. (2012). Kalman filter initialization for integrated population modelling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(1):151–162.

5. Besbeas, P. T. and Morgan, B. J. T. (2020). A general framework for modelling population abundance data. Biometrics, 76:281–292. https://doi.org/10.1111/biom.13120.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3