Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population

Author:

Tsai Shin-Fu,Shen Chih-Chien,Liao Chen-TuoORCID

Abstract

AbstractBayesian optimization is incorporated into genomic prediction to identify the best genotype from a candidate population. Several expected improvement (EI) criteria are proposed for the Bayesian optimization. The iterative search process of the optimization consists of two main steps. First, a genomic BLUP (GBLUP) prediction model is constructed using the phenotype and genotype data of a training set. Second, an EI criterion, estimated from the resulting GBLUP model, is employed to select the individuals that are phenotyped and added to the current training set to update the GBLUP model until the sequential observed EI values are less than a stopping tolerance. Three real datasets are analyzed to illustrate the proposed approach. Furthermore, a detailed simulation study is conducted to compare the performance of the EI criteria. The simulation results show that one augmented version derived from the distribution of predicted genotypic values is able to identify the best genotype from a large candidate population with an economical training set, and it can therefore be recommended for practical use. Supplementary materials accompanying this paper appear on-line.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Reference31 articles.

1. Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing, Malden

2. Akdemir D, Sanchez JI (2019) Design of training population for selective phenotyping in genomic prediction. Sci Rep 9:1446

3. Bull AD (2011) Convergence rates of efficient global optimization algorithms. J Mach Learn Res 12:2879–2904

4. Crossa J, Campos G, de los Pérez P (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

5. Garson GD (2012) Testing statistical assumptions. Statistical Publishing Associate, Asheboro

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3