Spatiotemporal Event Studies for Environmental Data Under Cross-Sectional Dependence: An Application to Air Quality Assessment in Lombardy

Author:

Maranzano PaoloORCID,Pelagatti Matteo

Abstract

AbstractWe propose a twofold adjustment for Event Studies considering spatiotemporal data in a multivariate time series framework where the data are characterized by spatial and temporal dependence. The first adjustment consists of modeling the spatiotemporal dynamics of the data by implementing several geostatistical models capable of handling both spatial and temporal components, as well as estimating the relationship between the response variable and a set of exogenous factors. With the second adjustment, we propose to use cross-sectional-adjusted test statistics directly accounting for spatial cross-correlation. The proposed methods are applied to the case of NO$$_2$$ 2 concentrations observed in Northern Italy during the first wave of the COVID-19 pandemic. The key findings are as follows. First, all the considered geostatistical models estimate larger reductions in the major metropolitan and congested areas, while smaller reductions are estimated in rural plains and in the mountains. Second, the models are nearly equivalent in terms of fitting and are capable of identifying the true event window. Third, by using spatiotemporal models we ensure the residuals are uncorrelated across space and time, thus allowing Event Studies test statistics to provide reliable and realistic estimates. Fourth, as expected, all test statistics show significant reductions in NO$$_2$$ 2 concentrations starting from the first few days of lockdown. Supplementary materials accompanying this paper appear online.

Funder

Fondazione Cariplo

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Statistics and Probability

Reference85 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3