Synthetic Generation of Trip Data: The Case of Smart Card

Author:

Kieu MinhORCID,Meredith Iris Brighid,Raith AndreaORCID

Abstract

AbstractWhile individual data are key for epidemiology, social simulation, economics, and various other fields, data owners are increasingly required to protect the personally identifiable information from data. Simple data de-identification or ‘data masking’ measures are limited, because they both reduce the utility of the dataset and are not sufficient to protect individual confidentiality. This paper provides detail on the creation of a synthetic trip data in transportation, with the Smart Card data as the case study. It discusses and compares two machine learning methods, a Generative Adversarial Network and a Bayesian Network for modelling and generating this dataset. The synthetic data retain important utility of the real dataset, e.g., the origin, destination, and time of travel, while each data point does not represent a real trip in the original dataset. The synthetic dataset can be used in various applications, including microsimulation of public transport systems, analysing travel behaviours, model predictive control of transit flows, or evaluation of transport policies.

Funder

FRDF Grant, University of Auckland

University of Auckland

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Ahmed G, Malick RAS, Akhunzada A, Zahid S, Sagri MR, Gani A (2021) An approach towards IoT-based predictive service for early detection of diseases in poultry chickens. Sustainability 13(23):13396. ISSN 2071-1050. https://doi.org/10.3390/su132313396. https://www.mdpi.com/2071-1050/13/23/13396

2. Axhausen KW, Gärling T (1992) Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems. Transp Rev 12(4):323–341. ISSN 0144-1647. https://doi.org/10.1080/01441649208716826

3. Badu-Marfo G, Farooq B, Patterson Z (2020) A differentially private multi-output deep generative networks approach for activity diary synthesis. arXiv preprint arXiv:2012.14574

4. Bengio Y, Thibodeau-Laufer É, Alain G, Yosinski J (2014) Deep generative stochastic networks trainable by backprop. arXiv preprint arXiv:1306.1091 [cs]

5. Bouman PC, Kroon LG, Schöbel A, Vervest PHM (2017) Passengers, crowding and complexity: models for passenger oriented public transport. PhD thesis, OCLC: 990177422

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3