Interpretable Representation and Customizable Retrieval of Traffic Congestion Patterns Using Causal Graph-Based Feature Associations

Author:

Nguyen Tin T.,Calvert Simeon C.,Li Guopeng,van Lint Hans

Abstract

AbstractThe substantial increase in traffic data offers new opportunities to inspect traffic congestion dynamics from different perspectives. This paper presents a novel framework for the interpretable representation and customizable retrieval of traffic congestion patterns using causal relation graphs, which harnesses many of these opportunities. By integrating domain knowledge with innovative data management techniques, we address the challenges of effectively handling and retrieving the growing volume of traffic data for diverse analytical purposes. The framework leverages causal graphs to encode traffic congestion patterns, capturing fundamental phenomena and their spatiotemporal relationships, thus facilitating an interpretable high-level view of traffic dynamics. Moreover, a customizable similarity measurement function is introduced based on inexact graph matching, allowing users to tailor the retrieval process to specific requirements. This framework’s capability to retrieve customizable and interpretable congestion patterns is demonstrated through extensive experiments with real-world highway traffic data in the Netherlands, highlighting its value in supporting diverse data-driven studies and applications.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3