Competing with autonomous model vehicles: a software stack for driving in smart city environments

Author:

Bächle Julius,Häringer Jakob,Köhler Noah,Özer Kadir-Kaan,Enzweiler MarkusORCID,Marchthaler Reiner

Abstract

AbstractThis article introduces an open-source software stack designed for autonomous 1:10 scale model vehicles. Initially developed for the Bosch Future Mobility Challenge (BFMC) student competition, this versatile software stack is applicable to a variety of autonomous driving competitions. The stack comprises perception, planning, and control modules, each essential for precise and reliable scene understanding in complex environments such as a miniature smart city in the context of BFMC. Given the limited computing power of model vehicles and the necessity for low-latency real-time applications, the stack is implemented in C++, employs YOLO Version 5 s for environmental perception, and leverages the state-of-the-art Robot Operating System (ROS) for inter-process communication. We believe that this article and the accompanying open-source software will be a valuable resource for future teams participating in autonomous driving student competitions. Our work can serve as a foundational tool for novice teams and a reference for more experienced participants. The code and data are publicly available on GitHub.

Publisher

Springer Science and Business Media LLC

Reference17 articles.

1. Robert Bosch GmbH, Bosch Future Mobility Challenge (2023). [Online]. Available: https://boschfuturemobility.com/. Accessed 21 December 2023

2. G. Jocher, YOLOv5, Ultralytics Inc. (2020). [Online]. Available: https://docs.ultralytics.com/de/models/yolov5/. Accessed 21 December 2023

3. R. Pi, Datasheet - Raspberry Pi 4 Model B (2019). [Online]. Available: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf. Accessed 21 December 2023

4. STMicroelectronics, NUCLEO–F401RE (2023). [Online]. Available: https://www.st.com/resource/en/data_brief/nucleo-f401re.pdf. Accessed 21 December 2023

5. NVIDIA Corporation Jetson TX2-Module (2023). [Online]. Available: https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-tx2/. Accessed 21 December 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3