Abstract
AbstractPredictive maintenance (PdM) cannot only avoid economic losses caused by improper maintenance but also maximize the operation reliability of product. It has become the core of operation management. As an important issue in PdM, the time between failures (TBF) prediction can realize early detection and maintenance of products. The reliability information is the main basis for TBF prediction. Therefore, the main purpose of this paper is to establish an intelligent TBF prediction model for complex mechanical products. The reliability information conversion method is used to solve the problems of reliability information collection difficulty, high collection cost and small data samples in the process of TBF prediction based on reliability information for complex mechanical products. The product reliability information is fully mined and enriched to obtain more reliable and accurate TBF prediction results. Firstly, the Fisher algorithm is employed to convert the reliability information to expand the sample, and the compatibility test is also discussed. Secondly, BP neural network is used to realize the final prediction of TBF, and PSO algorithm is used to optimize the initial weight and threshold of BP neural network to avoid falling into local extreme value and improve the convergence speed. Thirdly, the mean-absolute-percentage-error and the Coefficient of determination are selected to evaluate the performance of the proposed model and method. Finally, a case study of TBF prediction for a remanufactured CNC milling machine tool (XK6032-01) is studied in this paper, and the results show that the feasibility and superiority of the proposed TBF prediction method.
Funder
National Natural Science Foundation of China
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献