Learning phase in a LIVE Digital Twin for predictive maintenance

Author:

Bondoc Andrew E.,Tayefeh Mohsen,Barari AhmadORCID

Abstract

AbstractDigital Twins are essential in establishing intelligent asset management for an asset or machine. They can be described as the bidirectional communication between a cyber representation and a physical asset. Predictive Maintenance is dependent on the existence of three data sets: Fault history, Maintenance/Repair History, and Machine Conditions. Current Digital Twin solutions can fail to simulate the behaviour of a faulty asset. These solutions also prove to be difficult to implement when an asset’s fault history is incomplete. This paper presents the novel methodology, LIVE Digital Twin, to develop Digital Twins with the focus of Predictive Maintenance. The four phases, Learn, Identify, Verify, and Extend are discussed. A case study analyzes the relationship of component stiffness and vibration in detecting the health of various components. The Learning phase is implemented to demonstrate the process of locating a preliminary sensor network and develop the faulty history of a Sand Removal Skid assembly. Future studies will consider fewer simplifying assumptions and expand on the results to implement the proceeding phases.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The advance of digital twin for predictive maintenance: The role and function of machine learning;Journal of Manufacturing Systems;2023-12

2. Implementation of LIVE Digital Twin Enabled Smart Maintenance Using Smart Structural Sensors;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

3. Natural Frequency Control Using Simulated Annealing-Based Binary Topology Optimization;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3