Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction

Author:

Zhang FuqiangORCID,Zhang Yanrui,Xu Shilin

Abstract

AbstractUnder the background of the fourth industrial revolution driven by the new generation information technology and artificial intelligence, human–robot collaboration has become an important part of smart manufacturing. The new “human–robot–environment” relationship conducts industrial robots to collaborate with workers to adapt to environmental changes harmoniously. How to determine a reasonable human–robot interaction operations allocation strategy is the primary problem, by comprehensively considering the workers’ flexibility and industrial robots’ automation. In this paper, a human–robot collaborative operation framework based on CNC (Computer Number Control) machine tool was proposed, which divided into three stages: pre-machining, machining and post-machining. Then, an action-based granularity decomposition method was used to construct the human–robot interaction hierarchical model. Further, a collaboration effectiveness-based operations allocation function was established through normalizing the time, cost, efficiency, accuracy and complexity of human–robot interaction. Finally, a simulated annealing algorithm was adopted to solve preferable collaboration scheme; a case was used to verify the feasibility and effectiveness of the proposed method. It is expected that this study can provide useful guidance for human–robot interaction operations allocation on CNC machine tools.

Funder

National Key R&D Program of China

Major Special Science and Technology Project of Shaanxi Province, China

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Tool Requirements for Modeling the Execution of Technological Process Operations by Collaborative Robotic System Participants;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. A Survey on Collaborative Learning for Intelligent Autonomous Systems;ACM Computing Surveys;2023-11-10

3. Approach to Efficient Task Allocation and Cost Minimization in Collaborative Robotic Systems;2023 International Russian Smart Industry Conference (SmartIndustryCon);2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3