Multi-domain fusion for cargo UAV fault diagnosis knowledge graph construction

Author:

Xiao Ao,Yan WeiORCID,Zhang Xumei,Liu Ying,Zhang Hua,Liu Qi

Abstract

AbstractThe fault diagnosis of cargo UAVs (Unmanned Aerial Vehicles) is crucial to ensure the safety of logistics distribution. In the context of smart logistics, the new trend of utilizing knowledge graph (KG) for fault diagnosis is gradually emerging, bringing new opportunities to improve the efficiency and accuracy of fault diagnosis in the era of Industry 4.0. The operating environment of cargo UAVs is complex, and their faults are typically closely related to it. However, the available data only considers faults and maintenance data, making it difficult to diagnose faults accurately. Moreover, the existing KG suffers from the problem of confusing entity boundaries during the extraction process, which leads to lower extraction efficiency. Therefore, a fault diagnosis knowledge graph (FDKG) for cargo UAVs constructed based on multi-domain fusion and incorporating an attention mechanism is proposed. Firstly, the multi-domain ontology modeling is realized based on the multi-domain fault diagnosis concept analysis expression model and multi-dimensional similarity calculation method for cargo UAVs. Secondly, a multi-head attention mechanism is added to the BERT-BILSTM-CRF network model for entity extraction, relationship extraction is performed through ERNIE, and the extracted triples are stored in the Neo4j graph database. Finally, the DJI cargo UAV failure is taken as an example for validation, and the results show that the new model based on multi-domain fusion data is better than the traditional model, and the precision rate, recall rate, and F1 value can reach 87.52%, 90.47%, and 88.97%, respectively.

Funder

National Natural Science Foundation of China

Hubei Provincial advantaged characteristic disciplines (groups) project of Wuhan University Science and Technology

Logistics Education Reform and Research Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models for UAVs: Current State and Pathways to the Future;IEEE Open Journal of Vehicular Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3